4.8 Article

Using Laser-Induced Acoustic Desorption/Electrospray Ionization Mass Spectrometry To Characterize Small Organic and Large Biological Compounds in the Solid State and in Solution Under Ambient Conditions

Journal

ANALYTICAL CHEMISTRY
Volume 81, Issue 3, Pages 868-874

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac800896y

Keywords

-

Ask authors/readers for more resources

We have coupled laser-induced acoustic desorption (LIAD) with electrospray ionization (ESI) mass spectrometry (LIAD/ESI/MS) to characterize molecules in the solid state and in solution under ambient conditions. To perform an LIAD/ESI analysis, the sample droplet is deposited on the surface of a thin aluminum foil by a micropipette; the rear side of the foil with the sample spot is then irradiated with a pulse from a Nd:YAG IR laser. The resulting shockwave and heat cause the sample on the rear side to change from the condensed phase to the gas phase. The desorbed species then move upward to enter an ESI plume to react with charged solvent species (methanol- and water-related ions and droplets), forming singly or multiply charged analyte ions. A quadrupole/time-of-flight (Q-TOF) mass analyzer attached to the LIAD/ESI source detects the analyte ions to obtain an ESI-like mass spectrum. Both small organic and large biological compounds (including amino acids, peptides, and proteins) were successfully ionized and detected by the LIAD/ESI/MS system. Although native and denatured myoglobin ions were both detected from a liquid sample solution, only the denatured myoglobin ions were detected from a dried sample.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available