4.8 Article

Integrated, Nontargeted Ultrahigh Performance Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry Platform for the Identification and Relative Quantification of the Small-Molecule Complement of Biological Systems

Journal

ANALYTICAL CHEMISTRY
Volume 81, Issue 16, Pages 6656-6667

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac901536h

Keywords

-

Ask authors/readers for more resources

To address the challenges associated with metabolomics analyses, such as identification of chemical structures and elimination of experimental artifacts, we developed a platform that integrated the chemical analysis, including identification and relative quantification, data reduction, and quality assurance components of the process. The analytical platform incorporated two separate ultrahigh performance, liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS2) injections; one injection was optimized for basic species, and the other wits optimized for acidic species. This approach permitted the detection of 339 small molecules, a total instrument analysis time of 24 min (two injections at 12 min each), while maintaining a median process variability of 9%. The resulting MS/MS2 data were searched against kin in-house generated authentic standard library that included retention time, molecular weight (m/z), preferred adducts, and in-source fragments as well as their associated MS/MS spectra for all molecules in the library. The library allowed the rapid and high-confidence identification of the experimentally detected molecules based on a multiparameter match without need for additional analyses. This integrated platform enabled the high-throughput collection and relative quantitative analysis of analytical data and identified a large number and broad spectrum of molecules with a high degree of confidence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available