4.8 Article

Proton Sponge: A Novel and Versatile MALDI Matrix for the Analysis of Metabolites Using Mass Spectrometry

Journal

ANALYTICAL CHEMISTRY
Volume 81, Issue 19, Pages 7954-7959

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac901048z

Keywords

-

Funding

  1. International Max Planck Research School
  2. The exploration of Ecological Interactions with Molecular and Chemical Techniques
  3. Max Planck Society

Ask authors/readers for more resources

Here, we show the usefulness of a strong base, 1,8-bis(dimethyl-amino)naphthalene (DMAN; proton sponge), as a novel matrix for MALDI-TOF/MS analysis of anions. Several strong and weakly acidic low-molecular-weight analytes (fatty acids, amino acids, fatty acid-amino acid conjugates, plant and animal hormones, vitamins, and short peptides) were measured at physiologically relevant concentrations. Clear negative-mode MALDI-TOF/MS spectra of all analytes using DMAN as the matrix show only deprotonated analyte signals at a low picomole/femtomole limit-of-detection. Moreover, the spectra were totally devoid of any matrix-related signals. Standard calibration curves gave good linearity over the entire picomole range: over two concentration orders in most cases and over three orders for peptides. Using this method, the crude regurgitate of the tobacco hornworm caterpillars (Manduca sexta, Lepidoptera, Sphingidae) was analyzed. As many as I I different components were identified from a single spot, including 16:0, 18:2, 18: 3, and 21:0 free acids and 5:0-Glu, 6:0-Glu, 18:2-Glu, 18:3-Glu, 16:0-Glu, and 16:3-Glu fatty acid-amino acid conjugates (FACs) in complete qualitative agreement with previously reported anion exchange-HPLC analyses. The identity of these components was confirmed by negative ion collision-induced dissociation (CID) MS2 spectra.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available