4.4 Article

Effect of chaotic vasomotion in skeletal muscle on tissue oxygenation

Journal

MICROVASCULAR RESEARCH
Volume 74, Issue 1, Pages 51-64

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.mvr.2007.02.004

Keywords

vasomotion; chaos; tissue oxygenation; capillary network; vascular regulation

Ask authors/readers for more resources

Vasomotion refers to spontaneous variations in the lumen size of small vessels, with a plausible role in regulation of various aspects of microcirculation. We propose a computational model of vasomotion in skeletal muscle in which the pattern of vasomotion is shown to critically determine the efficiency of oxygenation of a muscle fiber. In this model, precapillary sphincters are modeled as nonlinear oscillators. We hypothesize that these sphincters interact via exchange of vasoactive substances. As a consequence, vasomotion is described as a phenomenon associated with a network of nonlinear oscillators. As a specific instance, we model the vasomotion of precapillary sphincters surrounding an active fiber. The sphincters coordinate their rhythms so as to minimize oxygen deficit in the fiber. Our modeling studies indicate that efficient oxygenation of the fiber depends crucially on the mode of interaction among the vasomotions of individual sphincters. While chaotic forms of vasomotion enhanced oxygenation, regular patterns of vasomotion failed to meet the oxygenation demand accurately. (c) 2007 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available