4.8 Article

Real-Time Polymerase Chain Reaction MicroRNA Detection Based on Enzymatic Stem-Loop Probes Ligation

Journal

ANALYTICAL CHEMISTRY
Volume 81, Issue 13, Pages 5446-5451

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac900598d

Keywords

-

Funding

  1. NSFC [30600142, 90607004]
  2. Ministry of Science and Technology of P.R China [2007AA04Z313]
  3. Postdoc Foundation of China [20060400004]

Ask authors/readers for more resources

MiRNAs (microRNAs) are a group of endogenous, small noncoding RNA with the length of 18-25 nucleotides, which have recently been demonstrated to play important roles in a wide range of biological processes, In this work, we developed a simple, sensitive, specific, and inexpensive assay through the combination of enzymatic probe ligation and real-time PCR amplification for the measurement of mature miRNAs. A couple of novel DNA probes with a stem-loop structure were implemented to reduce nonspecific ligation by at least 100-fold. The assay has several remarkable features including wide dynamic range, low total RNA input (0.02-0.2 ng), distinct anti-interference from precursor miRNAs (signal-to-noise ratio > 500), and single-base mismatch discrimination among miRNA sequences. In addition, a one-tube assay could be accomplished by designing a couple of universal probes, which makes it feasible to examine the expression of a whole family of miRNA (such as let-7) at one time. Finally, we validated the method for quantifying the expression of four mature miRNAs including miR-122, miR-1, miR-34a, and let-7a across 10 mouse tissues, where U6 snRNA could be simultaneously examined as an endogenous control. Thus, this method revealed a great potential for miRNA quantitation in ordinary laboratory studies and clinical diagnoses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available