4.8 Article

Evaluation of Ultrafast 2D NMR for Quantitative Analysis

Journal

ANALYTICAL CHEMISTRY
Volume 81, Issue 1, Pages 479-484

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac8021168

Keywords

-

Ask authors/readers for more resources

Recent ultrafast methods make it possible to obtain two-dimensional (2D) nuclear magnetic resonance (NMR) spectra in a fraction of a second. This paper presents the first evaluation of ultrafast 2D NMR for quantitative analysis. On the basis of optimized conditions presented in recent studies, two homonuclear ultrafast techniques, J-resolved spectroscopy and TOCSY, are evaluated on model mixtures in terms of repeatability, long time stability, and linearity. The results are compared to conventional 1D (1)H NMR spectroscopy. Repeatabilities better than 1 % for ultrafast J-resolved spectra and better than 7% for TOCSY spectra are obtained. The long-term stability is better than 4% for J-resolved spectroscopy and between 2% and 11% for TOCSY. Moreover, both methods are characterized by excellent linearities. This new analytical method opens important perspectives for fast, precise, and accurate quantitative analysis of complex mixtures and for the quantitative study of short time scale phenomena.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available