4.8 Article

A World-to-Chip Interface for Digital Microfluidics

Journal

ANALYTICAL CHEMISTRY
Volume 81, Issue 3, Pages 1061-1067

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac802154h

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council (NSERC)

Ask authors/readers for more resources

Digital microfluidics (DMF) is a fluid handling technique that enables manipulation of discrete droplets on an array of electrodes. There is considerable enthusiasm for this method because of the potential for array-based screening applications. A limitation for DMF is nonspecific adsorption of reagents to device surfaces. If a given device is used to actuate multiple reagents, this phenomenon can cause undesirable cross-contamination. A second limitation for DMF (and all other microfluidic systems) is the world-to-chip interface; it is notoriously difficult to deliver reagents and samples to such systems without compromising the oft-hyped advantages of rapid analyses and reduced reagent consumption. We introduce a new strategy for digital microfluidics, in which a removable plastic skin is used to (a) eliminate cross-contamination and (b) bridge the world-to-chip interface. We demonstrated the utility of this format by implementing on-chip protein digestion on immobilized enzyme depots. This new method has the potential to transform DMF from being a curiosity for aficionados into a technology that is useful for biochemical applications at large.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available