4.7 Article

Fractal dimension in dissipative chaotic scattering

Journal

PHYSICAL REVIEW E
Volume 76, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.76.016208

Keywords

-

Ask authors/readers for more resources

The effect of weak dissipation on chaotic scattering is relevant to situations of physical interest. We investigate how the fractal dimension of the set of singularities in a scattering function varies as the system becomes progressively more dissipative. A crossover phenomenon is uncovered where the dimension decreases relatively more rapidly as a dissipation parameter is increased from zero and then exhibits a much slower rate of decrease. We provide a heuristic theory and numerical support from both discrete-time and continuous-time scattering systems to establish the generality of this phenomenon. Our result is expected to be important for physical phenomena such as the advection of inertial particles in open chaotic flows, among others.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available