4.4 Article

Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization

Journal

APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
Volume 142, Issue 1, Pages 60-70

Publisher

SPRINGER
DOI: 10.1007/s12010-007-0019-2

Keywords

cellulase; Trichoderma reesei; solid state fermentation; wheat bran; plackett and burman; central composite design

Ask authors/readers for more resources

The major constraint in the enzymatic saccharification of biomass for ethanol production is the cost of cellulase enzymes. Production cost of cellulases may be brought down by multifaceted approaches which includes the use of cheap lignocellulosic substrates for fermentation production of the enzyme, and the use of cost efficient fermentation strategies like solid state fermentation (SSF). The current study investigated the production of cellulase by Trichoderma reesei RUT C30 on wheat bran under SSF. Process parameters important in cellulase production were identified by a Plackett and Burman design and the parameters with significant effects on enzyme production were optimized for maximal yield using a central composite rotary design (CCD). Higher initial moisture content of the medium had a negative effect on production whereas incubation temperature influenced cellulase production positively in the tested range. Optimization of the levels of incubation temperature and initial moisture content of the medium resulted in a 6.2 fold increase in production from 0.605 to 3.8 U/gds of cellulase. The optimal combination of moisture and temperature was found to be 37.56% and 30 degrees C, respectively, for maximal cellulase production by the fungus on wheat bran.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available