4.1 Article

How robust is a neural circuit?

Journal

VISUAL NEUROSCIENCE
Volume 24, Issue 4, Pages 563-571

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0952523807070526

Keywords

retina; circuitry; information; synapse; spikes

Ask authors/readers for more resources

Design in engineering begins with the problem of robustness-by what factor should intrinsic capacity exceed normal demand? Here we consider robustness for a neural circuit that crosses the retina from cones to ganglion cells. The circuit's task is to represent the visual scene at many successive stages, each time by modulating a stream of stochastic events: photoisomerizations, then transmitter quanta, then spikes. At early stages, the event rates are high to achieve some critical signal-to-noise ratio and temporal bandwidth, which together set the information rate. Then neural circuits concentrate the information and repackage it, so that nearly the same total information can be represented by modulating far lower event rates. This is important for spiking because of its high metabolic cost. Considering various measurements at the outer and inner retina, we conclude that the safety factors are about 2-10, similar to other tissues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available