4.7 Article

A CUL-2 ubiquitin ligase containing three FEM proteins degrades TRA-1 to regulate C-elegans sex determination

Journal

DEVELOPMENTAL CELL
Volume 13, Issue 1, Pages 127-139

Publisher

CELL PRESS
DOI: 10.1016/j.devcel.2007.05.008

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM074212-01A2, R01 GM074212] Funding Source: Medline

Ask authors/readers for more resources

In Caenorhabditis elegans, the Gli-family transcription factor TRA-1 is the terminal effector of the sex-determination pathway. TRA-1 activity inhibits male development and allows female fates. Genetic studies have indicated that TRA-1 is negatively regulated by the fem-1, fem-2, and fem-3 genes. However, the mechanism of this regulation has not been understood. Here, we present data that TRA-1 is regulated by degradation mediated by a CUL-2-based ubiquitin ligase complex that contains FEM-1 as the substrate-recognition subunit, and FEM-2 and FEM-3 as cofactors. CUL-2 physically associates with both FEM-1 and TRA-1 in vivo, and cul-2 mutant males share feminization phenotypes with fem mutants. CUL-2 and the FEM proteins negatively regulate TRA-1 protein levels in C. elegans. When expressed in human cells, the FEM proteins interact with human CUL2 and induce the proteasome-dependent degradation of TRA-1. This work demonstrates that the terminal step in C. elegans sex determination is controlled by ubiquitin-mediated proteolysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available