4.8 Article

Enzyme colorimetric assay using unmodified silver nanoparticles

Journal

ANALYTICAL CHEMISTRY
Volume 80, Issue 18, Pages 7051-7055

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac801144t

Keywords

-

Funding

  1. National Natural Science Foundation of China [20335040, 20575063, 20427003]
  2. Chinese Academy of Sciences [KJCX2-YW-H09, H11]
  3. [2006AA020701]
  4. [2007CB714500]

Ask authors/readers for more resources

Colorimetric assay based on the unique surface plasmon resonance properties of metallic nanoparticles has received considerable attention in bioassay due to its simplicity, high sensitivity, and low cost. Most of colorimetric methods previously reported employed gold nanoparticles (GNPs) as sensing elements. In this work, we develop a sensitive, selective, simple, and label-free colorimetric assay using unmodified silver nanoparticle (AgNP) probes to detect enzymatic reactions. Enzymatic reactions concerning adenosine triphosphate (ATP) dephosphorylation by calf intestine alkaline phosphatase (CLAP) and peptide phosphorylation by protein kinase A (PKA) were studied. In the absence of the enzymes, unreacted ATP could protect AgNPs from salt-induced aggregation, whereas in the presence of the enzymes, the reaction product of ATP (i.e., adenosine for CLAP and ADP for PKA) could not. Via our method, dephosphorylation and phosphorylation could be readily detected by the color change of AgNPs, with a detection limit of 1 unit/mL for CLAP and a detection limit of 0.022 unit/mL for PKA. More importantly, the enzymatic inhibition by inhibitors and enzymatic activity in complex biological fluids could also be realized. This work is an important step toward a colorimetric assay using AgNPs and might provide a promise for enzyme assay in realistically complex systems and for screening of different enzyme inhibitors in future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available