4.8 Article

Genetically Modified Semisynthetic Bioluminescent Photoprotein Variants: Simultaneous Dual-Analyte Assay in a Single Well Employing Time Resolution of Decay Kinetics

Journal

ANALYTICAL CHEMISTRY
Volume 80, Issue 22, Pages 8470-8476

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac801209x

Keywords

-

Funding

  1. National Institutes of Health [GM 467917]
  2. National Science Foundation-IGERT

Ask authors/readers for more resources

Progress in the miniaturization and automation of complex analytical processes depends largely on increasing the sensitivity, diversity, and robustness of current labels. Because of their ubiquity and ease of use, fluorescent, enzymatic, and bioluminescent labels are often employed in such miniaturized and multiplexed formats, with each type of label having its own unique advantages and drawbacks. The ultrasensitive detection limits of bioluminescent reporters are especially advantageous when dealing with very small sample volumes and biological fluids. However, bioluminescent reporters currently do not have the multiplexing capability that fluorescent labels do. In an effort to address this limitation, we have developed a method of discriminating two semisynthetic aequorin variants from one another using time resolution. In this work we paired two aequorin conjugates with different coelenterazine analogues and then resolved the two signals from one another using the difference in decay kinetics and half-life times. Utilizing this time-resolution, we then developed a simultaneous, dual-analyte, single well assay for 6-keto-prostaglandin-FI-alpha and angiotensin II, two important cardiovascular molecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available