4.7 Review

The dynamics of signaling at the histaminergic photoreceptor synapse of arthropods

Journal

PROGRESS IN NEUROBIOLOGY
Volume 82, Issue 4, Pages 202-227

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pneurobio.2007.03.006

Keywords

histamine; histaminergic photoreceptor synapse; transporter; glia; synaptic vesicle; neurotransmitter recycling; disinhibition; Ebony/Tan pathway; drosophila; barnacle; locust; limulus; synaptic adaptation; Off response

Categories

Ask authors/readers for more resources

Histamine, a ubiquitous aminergic messenger throughout the body, also serves as a neurotransmitter in both vertebrates and invertebrates. In particular, the photoreceptors of adult arthropods use histamine, modulating its release to signal increases and decreases in light intensity. Strong evidence from various arthropod species indicates that histamine is synthesized and stored in photoreceptors, undergoes Ca-dependent release, inhibits postsynaptic interneurons by gating Cl channels, and is then recycled. In Drosophila, the synthetic enzyme, histidine decarboxylase, and the subunits of the histamine-gated chloride channel have been cloned. Possible histamine transporters at synaptic vesicles and for reuptake remain elusive. Indeed, the mechanisms that remove histamine from the synaptic cleft, and that help terminate histamine's action, are unexpectedly complex, their details remaining unresolved. A major pathway in Drosophila, and possibly other arthropod species, is by conjugation of histamine to P-alanine to form carcinine in adjacent glia. This conjugate then returns to the photoreceptors where it is hydrolysed to liberate histamine, which is then loaded into synaptic vesicles. Evidence from other species suggests that direct reuptake of histamine into the photoreceptors may also occur. Light depolarizes the photoreceptors, causing histamine release and postsynaptic inhibition; dimming hyperpolarizes the photoreceptors, causing a decrease in histamine release and an off response in the postsynaptic cell. Further pursuit of histamine's action at these highly specialized synapses should lead to an understanding of how they signal minute changes in presynaptic membrane potential, how they reliably extract signals from noise, and how they adapt to a wide range of presynaptic membrane potentials. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available