4.8 Article

Ambient molecular imaging and depth profiling of live tissue by infrared laser ablation electrospray ionization mass spectrometry

Journal

ANALYTICAL CHEMISTRY
Volume 80, Issue 12, Pages 4575-4582

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac8004082

Keywords

-

Ask authors/readers for more resources

Mass spectrometry in conjunction with atmospheric pressure ionization methods enables the in vivo investigation of biochemical changes with high specificity and sensitivity. Laser ablation electrospray ionization (LAESI) is a recently introduced ambient ionization method suited for the analysis of biological samples with sufficient water content With LAESI mass spectrometric analysis of chimeric Aphelandra squarrosa leaf tissue, we identify the metabolites characteristic for the green and yellow sectors of variegation. Significant parts of the related biosynthetic pathways (e.g., kaempferol biosynthesis) are ascertained from the detected metabolites and metabolomic databases. Scanning electron microscopy of the ablated areas indicates the feasibility of both two-dimensional imaging and depth profiling with a similar to 350 mu m lateral and similar to 50 mu m depth resolution. Molecular distributions of some endogenous metabolites show chemical contrast between the sectors of variegation and quantitative changes as the ablation reaches the epidermal and mesophyll layers. Our results demonstrate that LAESI mass spectrometry opens a new way for ambient molecular imaging and depth profiling of metabolites in biological tissues and live organisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available