4.8 Article

Mass spectral metabonomics beyond elemental formula: Chemical database querying by matching experimental with computational fragmentation spectra

Journal

ANALYTICAL CHEMISTRY
Volume 80, Issue 14, Pages 5574-5582

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac800548g

Keywords

-

Ask authors/readers for more resources

Despite recent advances in NMR and mass spectrometry, the structural identification of organic compounds in complex biofluids remains a significant analytical challenge. For mass spectroscopy applications, chemical identification is generally limited to determination of elemental formula. Here we test the hypothesis that unknown chemical structures can be determined by matching their experimental collision-induced dissociation (CID) fragmentation spectra with computational fragmentation spectra of compounds retrieved from chemical databases. The monoisotopic molecular weights (MIMW +/- 10 ppm) of 102 test compounds were used to download 102 bins from the PubChem database. Each bin contained the corresponding test compound and, on average, 272 other candidate compounds, including 158 compounds having the same elemental formula as the test compound. Commercially available software was used to generate fragmentation spectra for all compounds in each of the 102 bins. Experimental CID spectra for each of the 102 test compounds were then compared to the computational spectra in order to rank candidate compounds based on number of fragment MIMW matches. This method returned the test compound as the highest ranking (or tied with the highest ranking) compound for 65 of the 102 bins. The test compound was ranked within the top 20 candidate compounds for 87 bins. In addition, the correct elemental formula was ranked first for 98 of 102 bins. Thus, matching experimental with computational fragmentation spectra is a valid method for rapidly discriminating among compounds having the same elemental formula and provides a novel approach for querying chemical databases for structural information.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available