4.6 Article

Macroendocytosis and endosome processing in snake motor boutons

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 582, Issue 1, Pages 243-262

Publisher

WILEY
DOI: 10.1113/jphysiol.2007.130989

Keywords

-

Funding

  1. NINDS NIH HHS [R37 NS024752, R01 NS024752, NS-24752] Funding Source: Medline

Ask authors/readers for more resources

We have examined the processing of endosomes formed by macroendocytosis (ME), or bulk membrane retrieval, in active motor terminal boutons at the snake nerve-muscle synapse. Endocytic probes were imaged at light (FM1-43) and electron (horseradish peroxidase (HRP)) levels over stimulus frequencies representing low, intermediate and high levels of use. Endosomes formed rapidly (1-2 s) at all frequencies, concomitant with clathrin-mediated vesicular endocytosis (CME). Endosomes dissipated rapidly into vesicles (similar to 10 s). The dissipation rate was not influenced by activity. Many endosomes split into clusters of 2-20 smaller endosomes of varying size. Vesicles budded from these smaller endosomes, from large endosomes that had not undergone fission into smaller ones, and from precursor membrane infoldings that had not yet internalized. In snake, exocytosed vesicular membrane is not competent for reuse until after a delay (> 3 min). We found that time required for endosome processing is not responsible for this delay. Endosome processing might, however, limit availability of some vesicles for release at very high levels of use. Generally, endosome processing paralleled that of vesicles internalized directly from the plasma membrane via CME, regardless of stimulus frequency. There was no evidence for differential recruitment of ME versus CME depending upon level of use.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available