4.8 Article

Label-free sequence-specific DNA sensing using copper-enhanced anodic stripping of purine bases at boron-doped diamond electrodes

Journal

ANALYTICAL CHEMISTRY
Volume 80, Issue 7, Pages 2391-2399

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac7019305

Keywords

-

Ask authors/readers for more resources

Stripping voltammetric determination of purine bases in the presence of copper ions at mercury, amalgam, or carbon-based electrodes has recently been utilized in analysis of DNA or synthetic oligodeoxynucleotides (ODNs). Here we report on copper-enhanced label-free anodic stripping detection of guanine and adenine bases in acid-hydrolyzed DNA at anodically oxidized boron-doped diamond electrode (AO-BDDE). The AO-BDDE was successfully applied in a three-electrode microcell in which an similar to 50 mu L drop of the analyte solution can be efficiently stirred during the accumulation step by streaming of an inert gas. Accelerated mass transport due to the solution motion in the presence of copper resulted in enhancement of the guanine oxidation signal by about 2 orders of magnitude (compared to accumulation of the analyte from still solution not containing copper), allowing an easy detection of similar to 25 fmol of the ODNs. The proposed technique is shown to be suitable for a determination of purine (particularly guanine) content in DNA samples. Applications of the technique in magnetic bead-based DNA assays (such as hybridization with DNA sequences exhibiting asymmetrical distribution of purine/pyrimidine nucleotides between the complementary strands or monitoring of amplification of specific DNA fragments in a duplex polymerase chain reaction) are demonstrated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available