4.5 Article

Winter-spring precipitation reconstructions from tree rings for northeast Mexico

Journal

CLIMATIC CHANGE
Volume 83, Issue 1-2, Pages 117-131

Publisher

SPRINGER
DOI: 10.1007/s10584-006-9144-0

Keywords

-

Ask authors/readers for more resources

The understanding of historic hydroclimatic variability is basic for planning proper management of limited water resources in northeastern Mexico. The objective of this study was to develop a network of tree-ring chronologies to reconstruct hydroclimate variability in northeastern Mexico and to analyze the influence of large-scale circulation patterns, such as ENSO. Precipitation sensitive tree-ring chronologies of Douglas-fir were developed in mountain ranges of the Sierra Madre Oriental and used to produce winter-spring precipitation reconstructions for central and southern Nuevo Leon, and southeastern Coahuila. The seasonal winter-spring precipitation reconstructions are 342 years long (1659-2001) for Saltillo, Coahuila and 602 years long (1400-2002) for central and southern Nuevo Leon. Both reconstructions show droughts in the 1810s, 1870s, 1890s, 1910s, and 1970s, and wet periods in the 1770s, 1930s, 1960s, and 1980s. Prior to 1800s the reconstructions are less similar. The impact of ENSO in northeastern Mexico (as measured by the Tropical Rainfall Index) indicated long-term instability of the Pacific equatorial teleconnection. Atmospheric circulation systems coming from higher latitudes (cold fronts or `nortes') and others developed in the Gulf of Mexico (tropical storms, hurricanes) also influence the climatic conditions characterizing this region. The recent development of new and longer tree-ring chronologies for the region will contribute to a better understanding of the interannual and multidecadal climatic variability of northeastern Mexico.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available