4.8 Article

Covalent virus layer for mass-based biosensing

Journal

ANALYTICAL CHEMISTRY
Volume 80, Issue 4, Pages 933-943

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac071470f

Keywords

-

Ask authors/readers for more resources

M13 virus particles were covalently attached to a planar gold-coated quartz crystal microbalance (QCM) through reaction with a self-assembled monolayer of N-hydroxysuccinimide thioctic ester, followed by incorporation of the blocking agent bovine serum albumin. This immobilization chemistry produced a phage multilayer having a coverage equivalent to 6.5 close-packed monolayers of the virus. The properties of this covalent virus surface or CVS for the mass-based detection of a 148.2 kDa antibody were then evaluated in a phosphate buffer using a flow injection analysis system. The mass of the CVS increased with exposure to an antibody (p-Ab) known to bind the phage particles with high affinity. Bound p-Ab was removed by washing with 0.5 M HCl thereby regenerating the sensor surface. A calibration plot for p-Ab binding was constructed by repetitively exposing the surface to p-Ab at concentrations between 6.6 and 200 nM and HCl rinsing after each exposure. The mass-concentration relationship was linear with a sensitivity of 0.018 mu g/(cm(2) nM) and a limit of detection of 7 nM or 1.3 pmol. The CVS could be saturated with high doses of p-Ab enabling the determination that an average of, 140 binding sites are available per M13 phage particle. Exposure of the CVS to a second, nonbinding antibody (n-Ab) did not cause a measurable mass change. These results demonstrate that the covalent virus layer is a rugged, selective, and sensitive means for carrying out mass-based biodetection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available