4.8 Article

Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity

Journal

ANALYTICAL CHEMISTRY
Volume 80, Issue 8, Pages 2949-2956

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac702343a

Keywords

-

Ask authors/readers for more resources

A novel kind of immobilized trypsin reactor based on organic-inorganic hybrid silica monoliths has been developed. With the presence of cetyltrimethyl ammonium bromide (CTAB) in the polymerization mixture, the hybrid silica monolithic support was prepared in a 100 mu m i.d. capillary by the sol-gel method with tetraethoxysilane (TEOS) and 3-aminopropyltrietboxysilane (APTES) as precursors. Subsequently, the monolith was activated by glutaraldehyde, and trypsin was covalently immobilized. By monitoring the reaction of a decapeptide, C-myc (EQKLISEEDL), the enzymatic activity of the immobilized trypsin was calculated, and the results showed that the digestion speed was about 6600 times faster than that performed in free solution. The performance of such a microreactor was further demonstrated by digesting myoglobin, with the digested products analyzed by microflow reversed-phase liquid chromatography coupled with tandem mass spectrometry (mu RPLC-MS/MS). With a stringent threshold for the unambiguous identification of the digests, the yielding sequence coverage for on-column digestion was 92%, the same as that obtained by insolution: digestion, whereas the residence time of myoglobin in the former case was only 30 s, about 1/1440 Of that performed in the latter case (12 h). Moreover, such an immobilized trypsin reactor was also successfully applied to the digestion of a mixture of model proteins and proteins extracted from E. coli.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available