4.8 Article

Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates

Journal

ANALYTICAL CHEMISTRY
Volume 80, Issue 9, Pages 3318-3326

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac702495g

Keywords

-

Ask authors/readers for more resources

The immobilization scheme of monodispersed gold nanoparticles (10-nm diameter) on piezoelectric substrate surfaces using organosilane molecules as cross-linkers has been developed for lithium niobate (LiNbO3)(_)and silicon oxide SiO2)/gold-covered lithium tantalate (LiTAO(3)) of Rayleigh and guided shear horizontal- (guided SH) surface acoustic wave (SAW) sensors. In this study, comparative measurements of gold nanoparticle adsorption kinetics using high-resolution field-emmission scanning electron microscopy and SAW sensors allow the frequency responses of SAW sensors to be quantitatively correlated with surface densities of adsorbed nanoparticles. Using this approach, gold nanoparticles are used as the nanosized mass standards to scale the mass loading in a wide dynamical range. Rayleigh-SAW and guided SH-SAW sensors are employed here to monitor the surface mass changes on the device surfaces in gas and liquid phases, respectively. The mass sensitivity (similar to 20 Hz.cm(2)/ng) of Rayleigh-SAW device (fundamental oscillation frequency of 113.3 MHz in air) is more than 2 orders of magnitude higher than that of conventional 9-MHz quartz crystal microbalance sensors. Furthermore, in situ (aqueous solutions), real-time measurements of adsorption kinetics for both citrate-stabilized gold nanoparticles and DNA-gold nanoparticle conjugates are also demonstrated by guided SH-SAW (fundamental oscillation frequency of 121.3 MHz). By comparing frequency shifts between the adsorption cases of gold nanoparticles and DNA-gold nanoparticle conjugates, the average number of bound oligonucleotides per gold nanoparticle can also be determined. The high mass sensitivity (similar to 6 Hz-cm(2)/ng) of guided SH-SAW sensors and successful detection of DNA-gold nanoparticle conjugates paves the way for real-time biosensing in liquids using nanoparticle-enhanced SAW devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available