4.8 Article

A global mass balance analysis of the source of perfluorocarboxylic acids in the Arctic ocean

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 41, Issue 13, Pages 4529-4535

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es070124c

Keywords

-

Ask authors/readers for more resources

Whereas the pervasive and abundant presence of perfluorinated carboxylic acids (PFCAs) in the Arctic marine food chain is clearly established, their origin and transport pathway into the Arctic Ocean are not. Either the atmospheric oxidation of volatile precursor compounds, such as the fluorotelomer alcohols (FTOHs), or the long-range oceanic transport of directly emitted PFCAs is seen as contributing the bulk of the PFCA input to the Arctic. Here simulations with the zonally averaged global fate and transport model Globo-POP, in combination with historical emission estimates for FTOHs and perfluorooctanoic acid (PFOA), are used to evaluate the relative efficiency and importance of the two transport pathways. Estimates of the emission-independent Arctic Contamination Potential reveal that the oceanic transport of directly emitted PFCAs is more than 10-fold more efficient than the atmospheric degradation of FTOHs in delivering PFCAs to the Arctic, mostly because of the low yield of the reaction. The cumulative historic emissions of FTOHs are lower than those estimated for PFOA alone by a factor of 2-3, further limiting the contribution that precursor oxidation makes to the total PFCAs load in the Arctic Ocean. Accordingly, when fed only with FTOH emissions, the model predicts FTOH air concentrations in agreement with the reported measurements, but yields Arctic seawater concentrations for the PFOA that are 2 orders of magnitude too low. Whereas ocean transport is thus very likely the dominant pathway of PFOA into the Arctic Ocean, the major transport route of longer chain PFCAs depends on the size of their direct emissions relative to those of 10:2 FTOH. The predicted time course of Arctic seawater concentrations is very similar for directly emitted and atmospherically generated PFCAs, implying that neither past doubling times of PFCA concentrations in Arctic marine mammals nor any future time trends are likely to resolve the question of the dominant source of PFCAs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available