4.8 Article

Kinetic calibration using dominant pre-equilibrium desorption for on-site and in vivo sampling by solid-phase microextraction

Journal

ANALYTICAL CHEMISTRY
Volume 80, Issue 2, Pages 481-490

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac701871q

Keywords

-

Ask authors/readers for more resources

A new kinetic calibration was developed using dominant pre-equilibrium desorption by solid-phase microextracton. The calibration was based on isotropism between absorption and desorption, which was proved theoretically and experimentally in an aqueous solution and semisolid matrix. This approach allows for the calibration of absorption using desorption to compensate for matrix effects. Moreover, concentration profiles are initially proposed to verify isotropism between the absorption and desorption, while providing a linear approach to obtain time constants for the purpose of quantitative analysis. This linear approach is more convenient, robust, and accurate than the nonlinear version with the previously used time profiles. Furthermore, the target analytes are used as the internal standards; thus, radioactive or deuterated internal standards are not necessary. In addition, dominant preequilibrium desorption utilizes the pre-equilibrium approach and offers a shorter sample preparation time, which is typically suitable for in vivo sampling. This kinetic calibration method was successfully applied to prepare samples of polycyclic aromatic hydrocarbons in a flow-through system and in vivo pesticide sampling in a jade plant (Crassula ovata).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available