4.8 Article

Immobilization-free sequence-specific electrochemical detection of DNA using ferrocene-labeled peptide nucleic acid

Journal

ANALYTICAL CHEMISTRY
Volume 80, Issue 19, Pages 7341-7346

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac8010236

Keywords

-

Funding

  1. Hong Kong Special Administrative Region Government [601106]

Ask authors/readers for more resources

An electrochemical method for sequence-specific detection of DNA without solid-phase probe immobilization is reported. This detection scheme starts with a solution-phase hybridization of ferrocene-labeled peptide nucleic acid (Fc-PNA) and its complementary DNA (cDNA) sequence, followed by the electrochemical transduction of Fc-PNA-DNA hybrid on indium tin oxide (ITO)-based substrates. On the bare ITO electrode, the negatively charged Fc-PNA-DNA hybrid exhibits a much reduced electrochemical signal than that of the neutral-charge Fc-PNA. This is attributed to the electrostatic repulsion between the negatively charged ITO surface and the negatively charged DNA, hindering the access of FcPNA-DNA to the electrode. On the contrary, when the transduction measurement is done on the ITO electrode coated with a positively charged poly(allylamine hydrochloride) (PAH) layer, the electrostatic attraction between the (+) PAH surface and the (-) Fc-PNA-DNA hybrid leads to a much higher electrochemical signal than that of the Fc-PNA. The measured electrochemical signal is proportional to the amount of cDNA present. In terms of detection sensitivity, the PAH-modified ITO platform was found to be more sensitive (with a detection limit of 40 fmol) than the bare ITO counterpart (with a detection limit of 500 fmol). At elevated temperatures, this method was able to distinguish fully matched target DNA from DNA with partial mismatches. Unpurified PCR amplicons were detected using a similar format with a detection limit down to 4.17 amol. This detection method holds great promise for single-base mismatch detection as well as electrochemistry-based detection of post-PCR products.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available