4.8 Article

Ion soft landing using a rectilinear ion trap mass spectrometer

Journal

ANALYTICAL CHEMISTRY
Volume 80, Issue 17, Pages 6640-6649

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac800929w

Keywords

-

Funding

  1. DOE [DE-FG02-06ER15807]
  2. U.S. Department of Energy (DOE) [DE-FG02-06ER15807] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

A new ion soft landing instrument has been built for the controlled deposition of mass selected polyatomic ions. The instrument has been operated with an electrospray ionization source; its major components are an electrodynamic ion funnel to reduce ion loss, a 90-degree bent square quadrupole that prevents deposition of fast neutral molecules onto the landing surface, and a novel rectilinear ion trap (RIT) mass analyzer. The ion trap is elongated (inner dimensions: 8 mm x 10 mm x 10 cm). Three methods of mass analysis have been implemented. (i) A conventional mass-selective instability scan with radial resonance ejection can provide a complete mass spectrum. (ii) The RIT can also be operated as a continuous rf/dc mass filter for isolation and subsequent soft landing of ions of the desired m/z value. (iii)The 90-degree bent square quadrupole can also be used as a continuous rf/dc mass filter. The mass resolution (50% definition) of the RIT in the trapping mode (radial ion ejection) is similar to 550. Ions from various test mixtures have been mass selected and collected on fluorinated self-assembled monolayers on gold substrates, as verified by analysis of the surface rinses. Desorption electrospray ionization (DESI) has been used to confirm intact deposition of [Val(5)]-Angiotensin I on a surface. Nonmass selective currents up to 1.1 nA and mass-selected currents of up to 500 pA have been collected at the landing surface using continuous rf/dc filtering with the RIT. A quantitative analysis of rinsed surfaces showed that the overall solution-to-solution soft landing yields are between 0.2 and 0.4%. Similar experiments were performed with rf/dc isolation of both arginine and lysine from a mixture using the bent square quadrupole in the rf/dc mode. The unconventional continuous mass selection methods maximize soft landing yields, while still allowing the simple acquisition of full mass spectra.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available