4.7 Article

An upwinding boundary condition capturing method for Maxwell's equations in media with material interfaces

Journal

JOURNAL OF COMPUTATIONAL PHYSICS
Volume 225, Issue 1, Pages 342-362

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2006.12.001

Keywords

finite-difference time-domain method; ghost fluid method; Maxwell's equations

Ask authors/readers for more resources

By using ghost points on either side of the interfaces, a global second-order accurate upwinding boundary condition capturing method for time-domain Maxwell's equations in media with material interfaces is proposed. The equations are discretized on a uniform Cartesian grid and the interfaces are allowed to intersect the grid in an arbitrary fashion. The method is then obtained by combining central finite difference schemes with applicable nodes being replaced by the ghost points and upwinding technique with jump conditions across the interfaces being captured in a manner that the upwind property is always satisfied. The resulting discretization has the desirable property that the allowed time step size is independent of the locations and the shapes of the interfaces. Numerical examples are then given to demonstrate the second-order accuracy as well as the stability of the method, where it is used to study wave equations with various types of material interfaces, including electromagnetic scattering of a plane incident wave by a dielectric circular cylinder. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available