4.4 Article Proceedings Paper

Modeling yeast cell polarization induced by pheromone gradients

Journal

JOURNAL OF STATISTICAL PHYSICS
Volume 128, Issue 1-2, Pages 193-207

Publisher

SPRINGER
DOI: 10.1007/s10955-007-9285-1

Keywords

G-protein; polarization; gradient-sensing; spatial dynamics; surface diffusion

Ask authors/readers for more resources

Yeast cells respond to spatial gradients of mating pheromones by polarizing and projecting up the gradient toward the source. It is thought that they employ a spatial sensing mechanism in which the cell compares the concentration of pheromone at different points on the cell surface and determines the maximum point, where the projection forms. Here we constructed the first spatial mathematical model of the yeast pheromone response that describes the dynamics of the heterotrimeric and Cdc42p G-protein cycles, which are linked in a cascade. Two key performance objectives of this system are (1) amplification-converting a shallow external gradient of ligand to a steep internal gradient of protein components and (2) tracking-following changes in gradient direction. We used simulations to investigate amplification mechanisms that allow tracking. We identified specific strategies for regulating the spatial dynamics of the protein components (i.e. their changing location in the cell) that would enable the cell to achieve both objectives.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available