4.8 Article

Comparisons of site- and haplotype-frequency methods for detecting positive selection

Journal

MOLECULAR BIOLOGY AND EVOLUTION
Volume 24, Issue 7, Pages 1562-1574

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msm078

Keywords

positive selection; haplotype-frequency tests; site-frequency tests

Ask authors/readers for more resources

In this report, we compare the differences between various site- and haplotype-frequency tests in their power to detect positive selection by doing computer simulations. Our results are the following. 1) Although haplotype-frequency tests that are conditional on the number of haplotypes (K) were developed for nonrecombining haplotypes, these tests are insensitive to recombination. Such tests, including the Ewens-Watterson (EW) test, can therefore be applied to recombining haplotypes. 2) Tests conditional on the number of segregating sites (S) become overly conservative in the presence of recombination. 3) The EW test is usually the most powerful test during the sweep phase, especially when the local recombination rate is high. 4) The extended haplotype homozygosity test relies heavily on the prior knowledge of the target of selection. With that knowledge, it is the most powerful test, whereas in the absence of this prior information, the test has little power. We also study the sensitivities of the haplotype-frequency tests to background selection and various demographic forces. We find that these tests are sensitive to some forces other than positive selection. To alleviate the problem of low specificity, compound tests, such as the DH test (Zeng et al. 2006), may be a solution. In the companion paper (Zeng K, Shi S, Wu C-I, in preparation), we use the EW test to devise 2 compound tests, which are more powerful in detecting positive selection than DH, but are also relatively insensitive to demography.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available