4.7 Article

Recombinant expression and characterization of XynD from Bacillus subtilis subsp subtilis ATCC 6051:: a GH 43 arabinoxylan arabinofuranohydrolase

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 75, Issue 6, Pages 1309-1317

Publisher

SPRINGER
DOI: 10.1007/s00253-007-0956-2

Keywords

Bacillus subtilis; arabinoxylan arabinofuranohydrolase; glycoside hydrolase family 43; arabinoxylan-derived oligosaccharides; alpha-L-arabinose

Ask authors/readers for more resources

The complete genome sequence of Bacillus subtilis reveals that sequences encoding several hemicellulases are co-localised with a gene (xynD) encoding a putative family 43 glycoside hydrolase that has not yet been characterised. In this work, xynD has been isolated from genomic DNA of B. subtilis subsp. subtilis ATCC 6051 and cloned for cytoplasmatic expression in Escherichia coli. Recombinant XynD (rXynD) was purified using ion-exchange chromatography and gel permeation chromatography. The enzyme had a molecular mass of approximately 52 kDa, a pI above 9.0 and releases alpha-L-arabinose from arabinoxylo-oligosaccharides as well as arabinoxylan polymers with varying degree of substitution. Using para-nitrophenyl-alpha-L-arabinofuranoside as substrate, maximum activity was observed at pH 5.6 and 45 degrees C. The enzyme retained its activity over a large pH range, while activity was lost after pre-incubation above 50 degrees C. Gas-liquid chromatography and proton nuclear magnetic resonance spectrometry analysis indicated that rXynD specifically releases arabinofuranosyl groups from mono-substituted C-(O)-2 and C-(O)-3 xylopyranosyl residues on the xylan backbone. As rXynD did not display endoxylanase, xylosidase or arabinanase activity and was inactive on arabinan, we conclude that this enzyme is best described as an arabinoxylan arabinofuranohydrolase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available