4.8 Article

Fibrinogen inhibits neurite outgrowth via β3 integrin-mediated phosphorylation of the EGF receptor

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0704045104

Keywords

blood-brain barrier; regeneration; spinal cord injury; transactivation; scar

Funding

  1. NINDS NIH HHS [R01 NS051470, R01NS052189, R01NS051470, P30 NS047101, R01 NS054734, R01 NS052189] Funding Source: Medline

Ask authors/readers for more resources

Changes in the molecular and cellular composition of the CNS after injury or disease result in the formation of an inhibitory environment that inhibits the regeneration of adult mammalian CNS neurons. Although a dramatic change in the CNS environment after traumatic injury or disease is hemorrhage because of vascular rupture or leakage of the blood-brain barrier, the potential role for blood proteins in repair processes remains unknown. Here we show that the blood protein fibrinogen is an inhibitor of neurite outgrowth that is massively deposited in the spinal cord after injury. We show that fibrinogen acts as a ligand for beta 3 integrin and induces the transactivation of EGF receptor (EGFR) in neurons. Fibrinogen-mediated inhibition of neurite outgrowth is reversed by blocking either beta 3 integrin or phoshorylation of EGFR. Inhibition of Src family kinases that mediate the cross-talk between integrin and growth factor receptors rescue the fibrinogen-induced phosphorylation of EGFR. These results identify fibrinogen as the first blood-derived inhibitor of neurite outgrowth and suggest fibrinogen-induced EGFR transactivation on neuronal cells as a molecular link between vascular and neuronal damage in the CNS after injury.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available