4.5 Article

Synaptotagmin I and II are present in distinct subsets of central synapses

Journal

JOURNAL OF COMPARATIVE NEUROLOGY
Volume 503, Issue 2, Pages 280-296

Publisher

WILEY-LISS
DOI: 10.1002/cne.21381

Keywords

synaptic vesicle; retina; bipolar cell; horizontal cell; photoreceptor; calyx of Held

Ask authors/readers for more resources

Synaptotagmin 1 and 2 (syt 1, syt 2) are synaptic vesicle-associated membrane proteins that act as calcium sensors for fast neurotransmitter release from presynaptic nerve terminals. Here we show that widely used monoclonal antibodies, mab 48 and znp-1, stain nerve terminals in multiple species and, in mouse, recognize syt 1 and syt 2, respectively. With these antibodies, we examined the synaptic localization of these synaptotagmin isoforms in the mouse central nervous system. Syt 1 and syt 2 are localized predominantly to different subsets of synapses in retina, hippocampus, cerebellum, and median nucleus of the trapezoid body (MNTB). In the MNTB, syt 1 and syt 2 are present in different presynaptic terminals on the same postsynaptic principal neuron. In retina, horizontal and OFF-bipolar cell terminals contain syt 2, whereas most other terminals contain syt 1. Syt 1 localization in the immature retina resembles that seen in adult; however, syt 2 localization appears strikingly different at perinatal ages and continues to change dramatically prior to eye opening. For example, starburst amacrine cells, which lack syt 2 in adult retina, transiently express syt 2 during the first 2 postnatal weeks. In addition to differences in spatial and temporal distribution, species-specific differences in synaptotagmin localization were observed in retina and cerebellum. The cell-, temporal-, and species-specific expression of synaptotagmin isoforms suggests that each may have distinct functions in neurotransmitter release.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available