4.6 Article

Nedd4-2 catalyzes ubiquitination and degradation of cell surface ENaC

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 282, Issue 28, Pages 20207-20212

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M611329200

Keywords

-

Ask authors/readers for more resources

Epithelial Na+ absorption is regulated by Nedd4-2, an E3 ubiquitin-protein ligase that reduces expression of the epithelial Na+ channel ENaC at the cell surface. Defects in this regulation cause Liddle syndrome, an inherited form of hypertension. Previous work found that Nedd4-2 binds to ENaC via PY motifs located in the C termini of alpha-, beta-, and gamma ENaC. However, little is known about the mechanism by which Nedd4-2 regulates ENaC surface expression. Here we found that Nedd4-2 catalyzes ubiquitination of alpha-, beta-, and gamma ENaC; Nedd4-2 overexpression increased ubiquitination, whereas Nedd4-2 silencing decreased ubiquitination. Although Nedd4-2 increased both mono/oligoubiquitinated and multiubiquitinated forms of ENaC, monoubiquitination was sufficient for Nedd4-2 to reduce ENaC surface expression and reduce ENaC current. Ubiquitination was disrupted by Liddle syndrome-associated mutations in ENaC or mutation of the catalytic HECT domain in Nedd4-2. Several findings suggest that the interaction between Nedd4-2 and ENaC is localized to the cell surface. First, Nedd4-2 bound to a population of ENaC at the cell surface. Second, Nedd4-2 catalyzed ubiquitination of cell surface ENaC. Third, Nedd4-2 selectively reduced ENaC expression at the cell surface but did not alter the quantity of immature ENaC in the biosynthetic pathway. Finally, Nedd4-2 induced degradation of the cell surface pool of ENaC. Together, the data suggest a model in which Nedd4-2 binds to and ubiquitinates ENaC at the cell surface, which targets surface ENaC for degradation, and thus, reduces epithelial Na+ transport.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available