4.6 Article

Rescue of a nephrogenic diabetes insipidus-causing vasopressin V2 receptor mutant by cell-penetrating peptides

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 282, Issue 28, Pages 20676-20685

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M611530200

Keywords

-

Ask authors/readers for more resources

Mutant membrane proteins are frequently retained in the early secretory pathway by a quality control system, thereby causing disease. An example are mutants of the vasopressin V-2 receptor (V2R) leading to nephrogenic diabetes insipidus. Transport-defective V(2)Rs fall into two classes: those retained exclusively in the endoplasmic reticulum ( ER) and those reaching post-ER compartments such as the ER/Golgi intermediate compartment. Although numerous chemical or pharmacological chaperones that rescue the transport of ER-retained membrane proteins are known, substances acting specifically in post-ER compartments have not been described as yet. Using the L62P (ER-retained) and Y205C ( reaching post-ER compartments) mutants of the V2R as a model, we show here that the cell-penetrating peptide penetratin and its synthetic analog KLAL rescue the transport of the Y205C mutant. In contrast, the location of the L62P mutant is not influenced by either peptide because the peptides are unable to enter the ER. We also show data indicating that the peptide-mediated transport rescue is associated with an increase in cytosolic Ca2+ concentrations. Thus, we describe a new class of substances influencing protein transport specifically in post-ER compartments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available