4.5 Article

Inflammation and dephosphorylation of the tight junction protein occludin in an experimental model of multiple sclerosis

Journal

NEUROSCIENCE
Volume 147, Issue 3, Pages 664-673

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2007.04.051

Keywords

blood-brain barrier; experimental autoimmune encephalomyelitis; EAE; kinase; edema; signaling

Categories

Ask authors/readers for more resources

Multiple sclerosis (MS) is a disease of the CNS in which inflammation, demyelination and neurodegeneration contribute to its initiation and progression. A frequently employed model of MS is experimental autoimmune encephalomyelitis (EAE). Here, to gain new insights into the disease process, an analysis of proteins in extracts of lumbar spinal cord from naive and EAE rats was undertaken. The data mainly confirm that inflammation and blood-brain barrier (BBB) breakdown are the major hallmarks of disease in this model. Given their importance in the BBB, junctional proteins were further investigated. Occludin, a protein localizing to tight junctions in brain endothelial cells, showed strikingly increased migration in EAE when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This increased migration was mimicked by in vitro phosphatase treatment, implying its dephosphorylation in EAE. Occludin dephosphorylation coincided with the onset of inflammation, slightly preceding visible signs of disease, and was just prior to apparent changes in BBB permeability. These findings suggest occludin is a target for signaling processes in EAE, perhaps regulating the response of the BBB to the inflammatory environment as seen in MS. (c) 2007 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available