4.7 Article Proceedings Paper

Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 43, Issue 2, Pages 271-281

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2007.04.021

Keywords

apocynin; NADPH oxidase; oxidative stress; apoptosis; cardiac function; heart failure; myocardial infarction

Ask authors/readers for more resources

Increases in NADPH oxidase activity, oxidative stress, and myocyte apoptosis coexist in failing hearts. In cardiac myocytes in vitro inhibition of NADPH oxidase reduces apoptosis. In this study, we tested the hypothesis that NADPH oxidase inhibition reduces myocyte apoptosis and improves cardiac function in heart failure after myocardial infarction (MI). Rabbits with heart failure induced by MI and sharn-operated animals were randomized to orally receive apocynin, an inhibitor of NADPH oxidase (15 mg per day) or placebo for 4 weeks. Left ventricular (LV) dimension and function were assessed by echocardiography and hemodynamics. Myocardial NADPH oxidase activity was measured by superoxide dismutase-inhibitable cytochrome c reduction assay, NADPH oxidase subunit p47phox expression by Western blot and immunofluorescence analysis, myocardial oxidative stress evaluated by 8-hyd roxydeoxyguano sine (8-OHdG) and 4-hydroxy-2-nonenal (4-FNE) using immunohistochemistry, and myocyte apoptosis by TUNEL assay. Mt rabbits exhibited LV dilatation and systolic dysfunction measured by LV fractional shortening and the maximal rate of LV pressure rise (dP/dt). These changes were associated with increases in NADPH oxidase activity, p47phox protein expression, 8-OHdG expression, 4-HNE expression, myocyte apoptosis, and Bax protein and a decrease in Bcl-2 protein. Apocynin reduced NADPH oxidase activity, p47phox protein, oxidative stress, myocyte apoptosis, and Bax protein, increased Bcl-2 protein, and ameliorated LV dilatation and dysfunction after MI. The results suggest that inhibition of NADPH oxidase may represent an attractive therapeutic approach to treat heart failure. (C) 2007 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available