4.8 Article

Structural analysis identifies imidazo[1,2-b]Pyridazines as PIM kinase inhibitors with In vitro antileukemic activity

Journal

CANCER RESEARCH
Volume 67, Issue 14, Pages 6916-6924

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-07-0320

Keywords

-

Categories

Funding

  1. Wellcome Trust Funding Source: Medline

Ask authors/readers for more resources

Much attention has recently been focused on PIM kinases as potential targets for the treatment of hematopoietic malignancies and some solid cancers. Using protein stability shift assays, we identified a family of imidazo[1,2-b]pyridazines to specifically interact with and inhibit PIM kinases with low nanomolar potency. The high-resolution crystal structure of a PIM1 inhibitor complex revealed that imidazo[1,2-b]pyrridazines surprisingly interact with the NH2-terminal lobe helix alpha C rather than with the kinase hinge region. Thus, the identified inhibitors are ATP competitive but not ATP mimetic compounds, explaining their enhanced selectivity with respect to conventional type I kinase inhibitors. One of the identified imidazo[1,2-b]pyridazines (K00135) was further tested in several hematopoietic cellular systems. First, K00135 dose-dependently impaired survival of murine Ba/F3 cells that have been rendered cytokine independent by overexpression of human PIMs. Second, K00135 impaired survival and clonogenic growth of a panel of human acute leukemia cells. Third, exposure of K00135 significantly suppressed in vitro growth of leukemic blasts from five acute myelogenous leukemia patients but not of normal umbilical cord blood mononuclear cells. In vitro kinase assays and immunoblotting using lysates from human MV4;11 leukemic cells showed inhibition of phosphorylation of known PIM downstream targets, such as BAD and eukaryotic translation initiation factor 4E-binding protein 1, by K00135. Taken together, we report a family of small molecules that selectively interact and block PIM kinases and could serve as a lead to develop new targeted antileukemic therapeutics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available