4.5 Article

Automated in-solution protein digestion using a commonly available high-performance liquid chromatography autosampler

Journal

ANALYTICAL BIOCHEMISTRY
Volume 411, Issue 2, Pages 284-291

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ab.2011.01.019

Keywords

Automation; Protein; Digestion; Autosampler; Mass spectrometry; Monoclonal antibody; Peptide mapping

Ask authors/readers for more resources

A completely automated peptide mapping liquid chromatography/mass spectrometry (LC/MS) system for characterization of therapeutic proteins in which a common high-performance liquid chromatography (HPLC) autosampler is used for automated sample preparation, including protein denaturation, reduction, alkylation, and enzymatic digestion, is described. The digested protein samples are then automatically subjected to LC/MS analysis using the same HPLC system. The system was used for peptide mapping of monoclonal antibodies (mAbs), known as a challenging group of therapeutic proteins for achieving complete coverage and quantitative representation of all peptides. Detailed sample preparation protocols, using an Agilent HPLC system, are described for Lys-C digestion of mAbs with intact disulfide bonds and tryptic digestion of mAbs after reduction and alkylation. The automated procedure of Lys-C digestion of nonreduced antibody, followed by postdigestion disulfide reduction, produces both the nonreduced and reduced digests that facilitate disulfide linkage analysis. The automated peptide mapping LC/MS system has great utility in preparing and analyzing multiple samples for protein characterization, identification, and quantification of posttranslational modifications during process and formulation development as well as for protein identity and quality control. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available