4.8 Article

The chromatin-remodeling factor FACT contributes to centromeric heterochromatin independently of RNAi

Journal

CURRENT BIOLOGY
Volume 17, Issue 14, Pages 1219-1224

Publisher

CELL PRESS
DOI: 10.1016/j.cub.2007.06.028

Keywords

-

Funding

  1. Wellcome Trust [065061] Funding Source: Medline

Ask authors/readers for more resources

Centromeres exert vital cellular functions in mitosis and meiosis. A specialized histone and other chromatin-bound factors nucleate a dynamic protein assembly that is required for the proper segregation of sister chromatids. In several organisms, including the fission yeast, Schizosaccharomyces pombe, the RNAi pathway contributes to the formation of silent chromatin in pericentromeric regions. Little is known about how chromatin-remodeling factors contribute to heterochromatic integrity and centromere function. Here we show that the histone chaperone and remodeling complex FACT is required for centromeric-heterochromatin integrity and accurate chromosome segregation. We show that Spt16 and Pob3 are two subunits of the S. pombe FACT complex. Surprisingly, yeast strains deleted for pob3+ are viable and alleviate gene silencing at centromeric repeats and at the silent mating-type locus. Importantly, like heterochromatin and RNAi pathway mutants, Pob3 null strains exhibit lagging chromosomes on anaphase spindles. Whereas the processing of centromeric RNA transcripts into siRNAs is maintained in Pob3 mutants, Swi6-association with the centromere is reduced. Our studies provide the first experimental evidence for a role of the RNA polymerase II cofactor FACT in heterochromatin integrity and in centromere function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available