4.6 Article

Histone deacetylase inhibitors modulates the induction and expression of amphetamine-induced behavioral sensitization partially through an associated learning of the environment in mice

Journal

BEHAVIOURAL BRAIN RESEARCH
Volume 181, Issue 1, Pages 76-84

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbr.2007.03.027

Keywords

behavioral sensitization; associative learning; histone deacetylase inhibitor; chromatin modification; amphetamine

Funding

  1. NINDS NIH HHS [R01 NS037403-01A1, R01 NS041083-01, NS41083, NS37403, R01 NS041083] Funding Source: Medline

Ask authors/readers for more resources

The behavioral sensitization produced by repeated amphetamine treatment may represent the neural adaptations underlying some of the features of psychosis and addiction in humans. Chromatin modification (specifically histone hyperacetylation) was recently recognized as an important regulator of psychostimulant-induced plasticity. We have investigated the effects of treatment with the histone deacetylase (HDAC) inhibitors butyric acid (BA, 630 mg/kg, i.p.) and valproic acid (VPA, 175 mg/kg, i.p.) on the psyhcostimulant locomotor sensitization induced by amphetamine (AMPH, 2.0 mg/kg, i.p.). Neither BA nor VPA had locomotor effects alone, but both significantly potentiated the amphetamine-induced behavioral sensitization in mice. At the molecular level, VPA and amphetamine produced an increase of histone H4 acetylation in the striatum as detected by Western blot analysis, while co-treatment with VPA and AMPH produced an additive effect on histone H4 acetylation. We then administered the HDAC inhibitors after treatment with amphetamine for 8 days to establish locomotor sensitization. We found that repeated administration of VPA or BA for 6 days inhibited the expression of sensitized response following amphetamine challenge. Finally, in a context-specific model we studied the effect of HDAC inhibitors on amphetamine-induced association of the treatment environment (associative learning). We found that VPA and BA enhance the context-specificity of expression of amphetamine sensitization. Thus, HDAC inhibitors differentially modulate the induction and expression of amphetamine-induced effects. Together, these results suggest that dynamic changes in chromatin modification may be an important mechanism underlying amphetamine-induced neuronal plasticity and associative learning. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available