4.7 Article

On the age and metallicity estimation of spiral galaxies using optical and near-infrared photometry

Journal

ASTROPHYSICAL JOURNAL
Volume 664, Issue 1, Pages 215-225

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/518855

Keywords

galaxies : abundances; galaxies : evolution; galaxies : photometry; galaxies : spiral; galaxies : stellar content

Ask authors/readers for more resources

In integrated light, some color-color diagrams that use optical and near-infrared photometry show surprisingly orthogonal grids as age and metallicity are varied, and they are coming into common usage for estimating the average age and metallicity of spiral galaxies. In this paper we reconstruct these composite grids using simple stellar population models from several different groups convolved with some plausible functional forms of star formation histories at fixed metallicity. We find that the youngest populations present (t < 2 Gyr) dominate the light, and because of their presence the age-metallicity degeneracy can be partially broken with broadband colors, unlike older populations. The scatter among simple stellar population models by different authors is, however, large at ages t < 2 Gyr. The dominant uncertainties in stellar population models arise from convective core overshoot assumptions and the treatment of the thermally pulsing asymptotic giant branch phase and helium abundance may play a significant role at higher metallicities. Real spiral galaxies are unlikely to have smooth, exponential star formation histories, and burstiness will cause a partial reversion to the single-burst case, which has even larger model-to-model scatter. Finally, it is emphasized that the current composite stellar population models need some implementation of chemical enrichment histories for the proper analysis of the observational data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available