4.7 Article

Modeling temporary anions in density functional theory: Calculation of the Fukui function

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 127, Issue 3, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2751158

Keywords

-

Ask authors/readers for more resources

Two approaches are investigated for modeling electron densities of temporary anions in density functional theory (DFT). Both rely on an artificial binding of the excess electron, in one case by a compact basis set and in the other by a potential wall. The key feature of the calculations is that the degree of binding is controlled in both cases by knowledge of the negative electron affinity of the corresponding neutral, approximated in terms of DFT local functional frontier orbital eigenvalues and vertical ionization potential, A=-(epsilon(LUMO)+epsilon(HOMO))-I. To illustrate the two approaches, Fukui functions for nucleophilic attack are determined in four molecules with increasingly negative electron affinities. They yield very similar results, which are notably different to those determined without artificial electron binding. The use of a potential wall has the attractive feature that large, diffuse basis sets can be used, avoiding the need for a compact basis, tailored to a particular molecule. (C) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available