4.7 Article

Extensions to the likelihood maximization approach for finding reaction coordinates

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 127, Issue 3, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2748396

Keywords

-

Ask authors/readers for more resources

This paper extends our previous work on obtaining reaction coordinates from aimless shooting and likelihood maximization. We introduce a simplified version of aimless shooting and a half-trajectory likelihood score based on the committor probability. Additionally, we analyze and compare the absolute log-likelihood score for perfect and approximate reaction coordinates. We also compare the aimless shooting and likelihood maximization approach to the earlier genetic neural network (GNN) approach of Ma and Dinner [J. Phys. Chem. B 109, 6769 (2005)]. For a fixed number of total trajectories in the GNN approach, the accuracy of the transition state ensemble decreases as the number of trajectories per committor probability estimate increases. This quantitatively demonstrates the benefit of individual committor probability realizations over committor probability estimates. Furthermore, when the least squares score of the GNN approach is applied to individual committor probability realizations, the likelihood score still provides a better approximation to the true transition state surface. Finally, the polymorph transition in terephthalic acid demonstrates that the new half-trajectory likelihood scheme estimates the transition state location more accurately than likelihood schemes based on the probability of being on a transition path. (C) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available