4.6 Article

Inhibition of a specific N-glycosylation activity results in attenuation of breast carcinoma cell invasiveness-related phenotypes -: Inhibition of epidermal growth factor-induced dephosphorylation of focal adhesion kinase

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 282, Issue 30, Pages 22150-22162

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M611518200

Keywords

-

Ask authors/readers for more resources

Changes in the expression of glycosyltransferases that branch N-linked glycans can alter the function of several types of cell surface receptors and a glucose transporter. To study in detail the mechanisms by which aberrant N-glycosylation caused by altered N-acetylglucosaminyltransferase V(GnT-V, GnT-Va, and Mgat5a) expression can regulate the invasiveness-related phenotypes found in some carcinomas, we utilized specific small interfering RNA (siRNA) to selectively knock down GnT-V expression in the highly metastatic and invasive human breast carcinoma cell line, MDA-MB231. Knockdown of GnT-V by siRNA expression had no effect on epidermal growth factor receptor expression levels but lowered expression of N-linked beta(1,6)-branching on epidermal growth factor receptor, as expected. Compared with control cells, knockdown of GnT-V caused significant inhibition of the morphological changes and cell detachment from matrix that is normally seen after stimulation with epidermal growth factor (EGF). Decreased expression of GnT-V caused a marked inhibition of EGF-induced dephosphorylation of focal adhesion kinase (FAK), consistent with the lack of cell morphology changes in the cells expressing GnT-V siRNA. The attenuation of EGF-mediated phosphorylation and activation of the tyrosine phosphatase SHP-2 was dramatically observed in GnT-V knockdown cells, and these effects could be rescued by reintroduction of GnT-V into these cells, indicating that reduced EGF-mediated activation of SHP-2 was GnT-V related. Concomitantly, knockdown of GnT-V caused reduced EGF-mediated ERK signaling and tumor cell invasiveness-related phenotypes, including effects on actin rearrangement and cell motility. No changes in EGF binding were observed, however, after knockdown of GnT-V. Our results demonstrate that decreased GnT-V activity due to siRNA expression in human breast carcinoma cells resulted in an inhibition of EGF-stimulated SHP-2 activation and, consequently, caused attenuation of the dephosphorylation of FAK induced by EGF. These effects suppressed EGF-mediated downstream signaling and invasiveness-related phenotypes and suggest GnT-V as a potential therapeutic target.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available