4.7 Article Proceedings Paper

The determination of tungsten, molybdenum, and phosphorus oxyanions by high performance liquid chromatography inductively coupled plasma mass spectrometery

Journal

TALANTA
Volume 72, Issue 5, Pages 1828-1832

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.talanta.2007.02.016

Keywords

tungstate; molybdate; phosphate; speciation; ICP-MS

Ask authors/readers for more resources

The toxic properties of tungsten compounds have recently been brought to the forefront with clusters of human cancer cases, such as in Fallon, NV. Such instances have made the determination of tungsten in natural water supplies vitally important. Tungsten exists in most environmental matrices as the soluble and mobile tungstate anion, although it can polymerize with itself and other anions, such as molybdate and phosphate. Because the geochemical and toxicological properties of these polymer species will vary from the monomeric tungstate parent, determination of tungstate speciation is as critical as determination of total dissolved tungsten concentration. Use of chromatographic separations, followed by element-specific detection is a proven technology for elemental speciation. In the present work, anion exchange chromatography has been coupled to inductively coupled plasma mass spectrometry to determine tungstate, molybdate, and phosphate species at the sub-mu g l(-1) and mu g l(-1) levels. The method provides quantitative determination of these species in about 10 min with the capability to simultaneously determine other oxyanion species. The method has been applied to groundwater and extracts of soils amended with tungsten powder. The water soluble tungsten in 1-h deionized water extracts after six months of soil aging was >15 mg l(-1), however, only similar to 50% of the tungsten was present as monomeric tungstate. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available