4.6 Article

A zebrafish model for subgenomic hepatitis C virus replication

Journal

INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE
Volume 35, Issue 3, Pages 791-797

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/ijmm.2015.2063

Keywords

hepatitis C virus; sub-replicon; non-structural protein 5B; core protein; zebrafish

Funding

  1. 'Innovative Group Grant' from the Ministry of Education (China)
  2. 11th 5-year 'New Drug R&D Program' of the Ministry of Science and Technology (China)
  3. National S&T Major Special Project on Major New Drug Innovation grant (China) [2009ZX09301-003-6-2]
  4. National Natural Science Foundation of China [30772681]

Ask authors/readers for more resources

Persistent infection with hepatitis C virus (HCV) is a major risk factor in the development of hepatocellular carcinoma. The elucidation of the pathogenesis of HCV-associated liver disease is hampered by the absence of an appropriate small animal model. Zebrafish exhibits high genetic homology to mammals, and is easily manipulated experimentally. In this study, we describe the use of a zebrafish model for the analysis of HCV replication mechanisms. As the 5' untranslated region (UTR), the core protein, the non-structural protein 5B (NS5B) and the 3'UTR are essential for HCV replication, we constructed a HCV sub-replicon gene construct including the 4 gene sequences and the enhanced green fluorescent protein (EGFP) reporter gene; these genes were transcribed through the mouse hepatocyte nuclear factor 4 (mHNF4) promoter. By microinjection of the subgenomic replicon vector into zebrafish larvae, the virus was easily detected by observing EGFP fluorescence in the liver. The positive core and NS5B signals showed positive expression of the HCV gene construct in zebrafish by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. Importantly, the negative strand sequence of the HCV subgenomic RNA was detected by RT-PCR and hybridization in situ, demonstrating that the HCV sub-replicon has positive replication activity. Furthermore, the hybridization signal mainly appeared in the liver region of larvae, as detected by the sense probe of the core protein or NS5B, which confirmed that the sub-replicon amplification occurred in the zebrafish liver. The amplification of the sub-replicon caused alterations in the expression of certain genes, which is similar to HCV infection in human liver cells. To verify the use of this zebrafish model in drug evaluation, two drugs against HCV used in clinical practice, ribavirin and oxymatrine, were tested and these drugs showed significant inhibition of replication of the HCV sub-replicon in the larvae. In conclusion, this zebrafish model of HCV may prove to be a novel and simple in vivo model for the study of the mechanisms of HCV replication and may also prove useful in the disovery of new anti-HCV.drugs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available