4.6 Article

miR-21 synergizes with BMP9 in osteogenic differentiation by activating the BMP9/Smad signaling pathway in murine multilineage cells

Journal

INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE
Volume 36, Issue 6, Pages 1497-1506

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/ijmm.2015.2363

Keywords

miR-21; bone morphogenetic protein 9; Smad7; osteogenic differentiation

Ask authors/readers for more resources

Bone morphogenetic proteins (BMPs), particularly BMP9, have been shown to promote the osteogenic differentiation of murine multilineage cells (MMCs) and to promote bone formation in bone diseases; however, the mechanisms involved remain poorly understood. MicroRNAs (miRNAs or miRs) have been proven to regulate mesenchymal stem cell (MSC) differentiation. In this study, we identified a novel mechanism that unravels the functional axis of a key miRNA (miR-21) which contributes to BMP9-induced osteogenic differentiation. We screened differentially expressed miRNAs in MMCs during BMP9-induced osteogenic differentiation and found that miR-21 was significantly upregulated by BMP9 during the osteogenesis of MMCs. Furthermore, miR-21 was confirmed to promote the osteogenic differentiation of the MMCs by suppressing Smad7, which negatively regulates the osteogenic differentiation of MMCs. The upregulation of miR-21 may promote the osteogenic differentiation of MMCs in synergy with BMP9. The findings of our study revealed a novel function of miR-21, and suggest that the overexpression of miR-21 contributes to bone formation by promoting BMP9-induced osteogenic differentiation. Our data may provide a molecular basis for the development of novel therapeutic strategies to treat bone diseases, such as osteoporosis and other inflammatory bone diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available