4.6 Article Proceedings Paper

Inactivation of enzyme laccase and role of cosubstrate oxygen in enzymatic removal of phenol from water

Journal

WATER ENVIRONMENT RESEARCH
Volume 79, Issue 8, Pages 858-867

Publisher

WATER ENVIRONMENT FEDERATION
DOI: 10.2175/106143007X175825

Keywords

enzymatic treatment; enzyme inactivation; laccase; phenol; enzymology

Ask authors/readers for more resources

Research was conducted to evaluate the potential use of laccase and its susceptibility to inactivation in an alternative enzyme-based treatment technology to remove parent phenol from buffered distilled water. Enzymatic oxidative polymerization of phenol with laccase was carried out in continuously stirred batch reactors. The reaction products were insoluble polymers, which precipitated out of the solution once their solubility limits were exceeded. The findings demonstrated that the polymeric products had significant effects on enzyme activity consumption and subsequent phenol removal. Enzyme species present in the reaction vessel were classified into enzyme remaining in the solution (type 1) and enzyme adhering to the precipitate polymers (type 2). Type I enzyme was more efficient in removal of phenol from solution compared with type 2. Subsequent filtration enhanced the phenol removal by removing type 2 enzyme adhering to the polymer particles and decelerating enzyme inactivation. The study also investigated the effects of available dissolved oxygen, provided through aeration and hydrogen peroxide addition, on phenol removal. Aeration and hydrogen peroxide addition increased the dissolved oxygen concentration, but had no effect on the progress curve for phenol removal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available