4.6 Article

Effects of miRNA-455 on cardiac hypertrophy induced by pressure overload

Journal

INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE
Volume 35, Issue 4, Pages 893-900

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/ijmm.2015.2105

Keywords

microRNA; hypertrophy/remodeling; left ventricular hypertrophy; left ventricular remodeling; calreticulin

Ask authors/readers for more resources

microRNAs (miRNAs or miRs) are essential in cardiac hypertrophy and in the development of heart failure. In the present study, we aimed to determine whether the restoration of miRNA-455 (miR-455) gene expression in vivo aggravates hypertrophy, but protects against adverse cardiac remodeling induced by pressure overload. Cardiac hypertrophy was induced by left ventricular pressure overload in male mice subjected to transverse aortic constriction (TAC). The mice were randomly selected to receive a tail vein injection of either miR-455 or green fluorescent protein per animal at 1, 8, 15 and 21 days following surgery. Cardiac hypertrophy, function and remodeling were evaluated by echocardiography, catheterization, histological analysis and the examination of the expression of specific genes and cardiac apoptosis. TAC (2 weeks following surgery) resulted in significant cardiac hypertrophy, which was significantly aggravated by treatment with miR-455. However, miR-455 replacement therapy markedly reduced myocardial fibrosis and inhibited apoptosis, suggesting that this therapy can prevent maladaptive ventricular remodeling. miR-455 was also identified and validated to target calreticulin, a protein that is critical for cardiac development. The restoration of miR-455 gene expression may thus be a potential therapeutic strategy to reverse pressure-induced cardiac hypertrophy and prevent maladaptive cardiac remodeling through the regulation of miR-455 at different time points following hypertrophy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available