4.5 Article Proceedings Paper

Flutter of a rectangular plate

Journal

JOURNAL OF FLUIDS AND STRUCTURES
Volume 23, Issue 6, Pages 904-919

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jfluidstructs.2007.02.002

Keywords

flow-induced vibration; cantilevered flexible plate; flutter instability; variable aspect-ratio

Ask authors/readers for more resources

We address theoretically the linear stability of a variable aspect ratio, rectangular plate in a uniform and incompressible axial flow. The flutter modes are assumed to be two-dimensional but the potential flow is calculated in three dimensions. For different values of aspect ratio, two boundary conditions are studied: a clamped-free plate and a pinned-free plate. We assume that the fluid viscosity and the plate viscoelastic damping are negligible. In this limit, the flutter instability arises from a competition between the destabilising fluid pressure and the stabilising flexural rigidity of the plate. Using a Galerkin method and Fourier transforms, we are able to predict the flutter modes, their frequencies and growth rates. The critical flow velocity is calculated as a function of the mass ratio and the aspect ratio of the plate. A new result is demonstrated: a plate of finite span is more stable than a plate of infinite span. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available